Webwhere 1 k n, 1 ‘ n. The rst expansion in (10) is called a cofactor row expansion and the second is called a cofactor col-umn expansion. The value cof(A;i;j) is the cofactor of element a ij in det(A), that is, the checkerboard sign times the minor of a ij. The proof of expansion (10) is delayed until page 301. The Adjugate Matrix. In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) submatrices of B. Specifically, for every i, The term is called the cofactor of in B. The Laplace expansion is often useful in proofs, as in, for example, allowing recursion on the siz…
Section 3.1 The Cofactor Expansion – Matrices - Unizin
WebNov 3, 2024 · The cofactor matrix of a given square matrix consists of first minors multiplied by sign factors: The first minor is the determinant of the matrix cut down … WebCofactor expansion is recursive, but one can compute the determinants of the minors using whatever method is most convenient. Or, you can perform row and column … solve on the interval 0 2pi 2 csc x+5 1
4.2: Cofactor Expansions - Mathematics LibreTexts
WebThe Laplace expansion is a formula that allows us to express the determinant of a matrix as a linear combination of determinants of smaller matrices, called minors. The Laplace expansion also allows us to write the inverse of a matrix in terms of its signed minors, called cofactors. The latter are usually collected in a matrix called adjoint ... WebAnswer to Determinants Using Cofactor Expansion (30 points) Question: Determinants Using Cofactor Expansion (30 points) Please compute the determinants of the following matrices using cofactor expansion. 21)⎣⎡132211383⎦⎤ 24) ⎣⎡232319113122⎦⎤ 22) ⎣⎡3271259723⎦⎤ 23)⎣⎡133321213172⎦⎤ 25) ⎣⎡1231111221003231⎦⎤ WebTranscribed Image Text: 6 7 a) If A-¹ = [3] 3 7 both sides by the inverse of an appropriate matrix). B = c) Let E = of course. , B- 0 0 -5 A = -a b) Use cofactor expansion along an appropriate row or column to compute he determinant of -2 0 b 2 с e ? =₂ 12 34 " B = b = and ABx=b, solve for x. (Hint: Multiply 1 0 0 a 1 0 . solve one step equations year 6